
Compact Inner Product Encryption from LWE

Zhedong Wang1, Xiong Fan2, and Mingsheng Wang1

1 State Key Laboratory of Information Security, Institute of Information
Engineering,Chinese Academy of Sciences, Beijing, China.

{wangzhedong, wangmingsheng}@iie.ac.cn.?
2 Cornell University, Ithaca, NY, USA. xfan@cs.cornell.edu.??

Abstract. Predicate encryption provides fine-grained access control and
has attractive applications. In this paper, We construct an compact in-
ner product encryption scheme from the standard Learning with Errors
(LWE) assumption that has compact public-key and achieves weakly
attribute-hiding in the standard model. In particular, our scheme only
needs two public matrices to support inner product over vector space
Zlog λ
q , and (λ/ log λ) public matrices to support vector space Zλq .

Our construction is the first compact functional encryption scheme based
on lattice that goes beyond the very recent optimizations of public pa-
rameters in identity-based encryption setting. The main technique in our
compact IPE scheme is a novel combination of IPE scheme of Agrawal,
Freeman and Vaikuntanathan (Asiacrypt 2011), fully homomorphic en-
cryption of Gentry, Sahai and Waters (Crypto 2013) and vector encoding
schemes of Apon, Fan and Liu (Eprint 2017).

1 Introduction

Encryption has traditionally been regarded as a way to ensure confidentiality
of an end-to-end communication. However, with the emergence of complex net-
works and cloud computing, recently the crypto community has been re-thinking
the notion of encryption to address security concerns that arise in these more
complex environments. Functional encryption [11, 23], generalized from identity
based encryption [25, 9] and attribute based encryption [19, 8], provides a satis-
fying solutions to this problem in theory. Two features provided by functional
encryption are fine-grained access and computing on encrypted data. The fine-
grained access part is formalized as a cryptographic notion, named predicate
encryption [12, 20]. In predicate encryption system, each ciphertext ct is associ-
ated with an attribute a while each secret key sk is associated with a predicate
f . A user holding the key sk can decrypt ciphertext ct if and only if f(a) = 0.
Moreover, the attribute a is kept hidden.

? This work was supported by the National Science Foundation of China
(No.61772516).

?? This material is based upon work supported by IBM under Agreement 4915013672.
Any opinions, findings, and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of the sponsors.

With several significant improvements on quantum computing, the commu-
nity is working intensively on developing applications whose security holds even
against quantum attacks. Lattice-based cryptography, the most promising can-
didate against quantum attacks, has matured significantly since the early works
of Ajtai [4] and Regev [24]. Most cryptographic primitives, ranging from ba-
sic public-key encryption (PKE) [24] to more advanced schemes e.g., identity-
based encryption (IBE) [13, 2], attribute-based encryption (ABE) [18, 10], fully-
homomorphic encryption (FHE) [15], etc., can be built from now canonical lattice
hardness assumptions, such as Regev’s Learning with Errors (LWE). From the
above facts, we can draw the conclusion that our understanding about instanti-
ating different cryptographic primitives based on lattices is quite well. However,
for improving the efficiency of existent lattice-based construction, e.g. reducing
the size of public parameters and ciphertexts, or simplifying the decryption algo-
rithm, our understanding is limited. Besides the theoretical interests in shrinking
the size of ciphertext, as the main motivation of studying functional encryption
comes from its potential deployment in complex networks and cloud computing,
thus the size of transmitted data is a bottleneck of current lattice-based con-
structions. Combining all these, this brings us to the following open question:

Can we optimize the size of public parameters and ciphertexts of other
functional encryption scheme beyond identity based encryption?

1.1 Our Contributions

We positively answer the above question by proposing the first lattice-based
compact inner product encryption (IPE). Roughly speaking, in an IPE scheme,
the secret key sk is associated with a predicate vector v ∈ Ztq and the ciphertext
is associated with an attribute vector w ∈ Ztq. The decryption works if and only
if the inner product 〈v,w〉 = 0. Despite this apparently restrictive structure,
inner product predicates can support conjunction, subset and range queries on
encrypted data [12], as well as disjunctions, polynomial evaluation, and CNF
and DNF formulas [20]. Our construction can be summarized in the following
informal theorem:

Theorem 1.1 (Main) Under the standard Learning with Errors assumption,
there is an IPE scheme satisfying weak attribute-hiding property for predicate/attribute
vector of length t = log n, where (1) the modulus q is a prime of size polynomial
in the security parameter n, (2) ciphertexts consist of a vector in Z2m+1

q , where
m is the lattice column dimension, and (3) the public parameters consists two
matrices in Zn×mq and a vector in Znq .

Remark 1.2 Our technique only allows us to prove a weak form of anonymity
(“attribute hiding”). Specifically, given a ciphertext ct and a number of keys that
do not decrypt ct, the user cannot determine the attribute associated with ct.
In the strong form of attribute hiding, the user cannot determine the attribute
associated with ct even when given keys that do decrypt ct. The weakened form
of attribute hiding we do achieve is nonetheless more that is required for ABE

2

and should be sufficient for many applications of PE. See Section 2 for more
detail.

We can also extend our compact IPE construction to support t = poly(n)-
length attribute vectors. Let t′ = t/ log n, our IPE construction supporting
poly(n)-length vectors can be stated in the following corollary:

Corollary 1.3 Under the standard Learning with Errors assumption, there is
an IPE scheme with weak attribute-hiding property supporting predicate/attribute
vector of length t = poly(n), where (1) the modulus q is a prime of size polynomial

in the security parameter n, (2) ciphertexts consist of a vector in Z(t′+1)m+1
q ,

where m is the lattice column dimension and (3) the public parameters consists
(t′ + 1) matrices in Zn×mq and a vector in Znq .

In addition to reducing the size of public parameters and ciphertexts, our de-
cryption algorithm is computed in an Single-Instruction-Multiple-Data (SIMD)
manner. In prior works [3, 26], the decryption computes the inner product be-
tween the predicate vector and ciphertext by (1) decomposing the predicate
vector, (2) multiplying-then-adding the corresponding vector bit and ciphertext,
entry-by-entry. Our efficient decryption algorithm achieves the inner product by
just one vector-matrix multiplication.

1.2 Our Techniques

Our high-level approach to compact inner product encryption from LWE be-
gins by revisiting the first lattice-based IPE construction [3] and the novel fully
homomorphic encryption proposed recently by Gentry, Sahai and Waters [17].

The Agrawal-Freeman-Vaikuntanathan IPE. We first briefly review the
construction of IPE in [3]. Their construction relies on the algebraic structure of
ABB-IBE [2] to solve “lattice matching” problem. Lattice matching means the
lattice structure computed in decryption algorithm matches the structure used in
key generation, and since the secret key is a short trapdoor of the desired lattice,
thus the decryption succeeds. To encode a predicate vector v ∈ Ztq according
to [3], the key generation first computes the r-ary decomposition of each entry

of v as vi =
∑k
j=0 vijr

j , and constructs the v-specific lattice as

[A|Av] = [A|
t∑
i=1

k∑
j=0

vijAij]

by “mixing” a long public matrices (A, {Aij}) ∈ Zn×mq . The secret key skv is

a short trapdoor of lattice Λ⊥q ([A|
∑t
i=1

∑k
j=0 vijAij]). To encode an attribute

vector w ∈ Ztq, for i ∈ [t], j ∈ [k], construct the w-specific vector as

cij = sT(Aij + rjwiB) + noise

3

for a randomly chosen vector s ∈ Znq and a public matrix B ∈ Zn×mq . To reduce
the noise growth in the inner produce computation, decryption only needs to
multiply-then-add the r-ary representation of vij to its corresponding cij , as

t∑
i=1

k∑
j=0

vijrij = sT(

t∑
i=1

k∑
j=0

vijAij + 〈v,w〉B) + noise

when 〈v,w〉 = 0, the (〈v,w〉B) part vanishes, thus the lattice computed after
inner produce matches the Av part in the key generation. Then the secret key
skv can be used to decrypt the ciphertext. Thererfore, the number of matrices
in public parameters or vectors in ciphertext is quasilinear in the dimension of
vectors.

Using GSW-FHE to compute inner product. Recent progress in fully ho-
momorphic encryption [17] makes us re-think the process of computing inner
product. We wonder whether we can use GSW-FHE [17] along with its simpli-
fication [5] to simplify the computing procedure. Recall ciphertext of message
x ∈ Zq in GSW-FHE can be view in the form ctx = AR+xG, where A ∈ Zn×mq

is a LWE matrix, R ∈ Zm×mq is a random small matrix and G is the “gadget
matrix” as first (explicitly) introduced in the work [21]. The salient point is that
there is an efficiently computable function G−1, so that (1) ctx ·G−1(yG) = ctxy,
and (2) each entry in matrix G−1(yG) is just 0 or 1, and thus has small norm.
These two nice properties can shrink the size of public parameters (ciphertext)
from quasilinear to linear. In particular, to encoding a predicate vector v ∈ Ztq,
we construct the v-specific lattice as

[A|Av] = [A|
t∑
i=1

AiG
−1(viG)]

where the number of public matrices is t + 1. To encode an attribute vector
w ∈ Ztq, for i ∈ [t], construct the w-specific vector as

ci = sT(Ai + wiG) + noise

Then, we can compute the inner product as

t∑
i=1

ci ·G−1(viG) = sT(

t∑
i=1

AiG
−1(viG) + 〈v,w〉G) + noise

Since G−1(viG) is small norm, the decryption succeeds when 〈v,w〉 = 0.

Achieving public parameters of two matrices. Our final step is to bring
the size of public parameters (or ciphertext) to constant for (t = log λ)-length
vectors. Inspired by recent work [7] in optimizing size of public parameters in
the IBE setting, we use their vector encoding method to further optimize our
IPE construction. The vector encoding for encoding v ∈ Ztq is

Ev =
[
v1In| · · · |vtIn

]
·Gtn,`,m

4

where Gtn,`,m ∈ Ztn×mq is the generalized gadget matrix introduced in [21,
7]. The dimension of this generalized gadget matrix tn × tn log`m. By setting
t = log q and ` = n, we can obtain the similar column dimension as origin gadget
matrix, i.e. O(n log q). Then the v-specific lattice becomes

Av = A1 ·G−1dn,`,m

(v1In...
vdIn

 ·Gn,2,m

)

and the w-specific ciphertext becomes

c = sT(A1 + Ew) + noise

The inner product can be computed in an SIMD way, as

c·G−1dn,`,m

(v1In...
vdIn

·Gn,2,m

)
≈ sT(A1·G−1dn,`,m

(v1In...
vdIn

Gn,2,m

)
+〈v,w〉Gn,2,m)

As such, our final IPE system contains only two matrices (A,A1) (and a vector
u), and the ciphertext consists of two vectors. By carefully twisting the vector
encoding and proof techniques shown in [3], we show our IPE construction satis-
fies weakly attribute-hiding. Our IPE system can also be extended in a “parallel
repetition” manner to support (t = λ)-length vectors, as Corollary 1.3 states.

1.3 Related Work

In this section, we provide a comparison with the first IPE construction [3] and
its follow-up improvement [26]. In [26], Xagawa used the “Full-Rank Difference
encoding”, proposed in [2] to map the vector Ztq to a matrix in Zn×nq . The
size of public parameters (or ciphertext) in his scheme depends linearly on the
length of predicate/attribute vectors, and the “Full-Rank Difference encoding”
incurs more computation overhead than embedding GSW-FHE structure in IPE
construction as described above. The detailed comparison is provided in Table 1.3
for length parameter t = log λ.

Table 1. Comparison of Lattice-based IPE Scheme

Schemes # of Zn×mq mat. in |pp| # of Zmq vec. in |ct| LWE param 1/α

[3] O(λ log λ) O(λ log λ) O(λ3.5)

[26] O(λ) O(λ) O(λ4)

Ours 2 2 O(λ4 log λ)

5

2 Preliminaries

Notation. Let λ be the security parameter, and let ppt denote probabilistic
polynomial time. We use bold uppercase letters to denote matrices M, and bold

lowercase letters to denote vectors v. We write M̃ to denote the Gram-Schmidt
orthogonalization of M. We write [n] to denote the set {1, ..., n}, and |t| to
denote the number of bits in the string t. We denote the i-th bit s by s[i]. We
say a function negl(·) : N → (0, 1) is negligible, if for every constant c ∈ N,
negl(n) < n−c for sufficiently large n.

2.1 Inner Product Encryption

We recall the syntax and security definition of inner product encryption (IPE)
[20, 3]. IPE can be regarded as a generalization of predicate encryption. An IPE
scheme Π = (Setup,KeyGen,Enc,Dec) can be described as follows:

Setup(1λ): On input the security parameter λ, the setup algorithm outputs
public parameters pp and master secret key msk.

KeyGen(msk,v): On input the master secret key msk and a predicate vector v,
the key generation algorithm outputs a secret key skv for vector v.

Enc(pp,w, µ): On input the public parameter pp and an attribute/message pair
(w, µ), it outputs a ciphertext ctw.

Dec(skv, ctw): On input the secret key skv and a ciphertext ctw, it outputs the
corresponding plaintext µ if 〈v,w〉 = 0; otherwise, it outputs ⊥.

Definition 2.1 (Correctness) We say the IPE scheme described above is cor-
rect, if for any (msk, pp)← Setup(1λ), any message µ, any predicate vector v ∈
Zdq , and attribute vector w ∈ Zdq such that 〈v,w〉 = 0, we have Dec(skv, ctw) = µ,
where skw ← KeyGen(msk,v) and ctv ← Enc(pp,w, µ).

Security. For the weakly attribute-hiding property of IPE, we use the following
experiment to describe it. Formally, for any ppt adversary A, we consider the
experiment ExptIPEA (1λ):

– Setup: Adversary A sends two challenge attribute vectors w0,w1 ∈ Zdq to

challenger. A challenger runs the Setup(1λ) algorithm, and sends back the
master public key pp.

– Query Phase I: Proceeding adaptively, the adversary A queries a sequence of
predicate vectors (v1, ...,vm) subject to the restriction that 〈vi,w0〉 6= 0 and
〈vi,w1〉 6= 0. On the i-th query, the challenger runs skvi

→ KeyGen(msk,vi),
and sends the result skvi

to A.
– Challenge: Once adversary A decides that Query Phase I is over, he outputs

two length-equal messages (µ∗0, µ
∗
1) and sends them to challenger. In response,

the challenger selects a random bit b∗ ∈ {0, 1}, and sends the ciphertext
ct∗ ← Enc(pp,wb∗ , µb∗) to adversary A.

– Query Phase II: AdversaryA continues to issue secret key queries (vm+1, ...,vn)
adaptively, subject to the restriction that 〈vi,w0〉 6= 0 and 〈vi,w1〉 6= 0. The
challenger responds by sending back keys skvi

as in Query Phase I.

6

– Guess: Adversary A outputs a guess b′ ∈ {0, 1}.

We note that query phase I and II can happen polynomial times in terms of
security parameter. The advantage of adversary A in attacking an IPE scheme
Π is defined as:

AdvA(1λ) =

∣∣∣∣Pr[b∗ = b′]− 1

2

∣∣∣∣ ,
where the probability is over the randomness of the challenger and adversary.

Definition 2.2 (Weakly attribute-hiding) We say an IPE scheme Π is weakly
attribute-hiding against chosen-plaintext attacks in selective attribute setting, if
for all ppt adversaries A engaging in experiment ExptIPEA (1λ), we have

AdvA(1λ) ≤ negl(λ).

2.2 LWE and Sampling Algorithms over Lattices

Learning With Errors. The LWE problem was introduced by Regev [24], the
works of [24] show that the LWE assumption is as hard as (quantum) solving
GapSVP and SIVP under various parameter regimes.

Definition 2.3 (LWE) For an integer q = q(n) ≥ 2, and an error distribution
χ = χ(n) over Zq, the Learning With Errors problem LWEn,m,q,χ is to distin-
guish between the following pairs of distributions (e.g. as given by a sampling
oracle O ∈ {Os,O$}):

{A, sTA + xT} and {A,u}

where A
$← Zn×mq , s

$← Znq , u
$← Zmq , and x

$← χm.

Two-Sided Trapdoors and Sampling Algorithms. We will use the follow-
ing algorithms to sample short vectors from specified lattices.

Lemma 2.4 ([16, 6]) Let q, n,m be positive integers with q ≥ 2 and sufficiently
large m = Ω(n log q). There exists a ppt algorithm TrapGen(q, n,m) that with
overwhelming probability outputs a pair (A ∈ Zn×mq ,TA ∈ Zm×m) such that A

is statistically close to uniform in Zn×mq and TA is a basis for Λ⊥q (A) satisfying

||TA|| ≤ O(n log q) and ||T̃A|| ≤ O(
√
n log q)

except with negl(n) probability.

Lemma 2.5 ([16, 13, 2]) Let q > 2,m > n. There are two sampling algorithms
as follows:

– There is a ppt algorithm SampleLeft(A,B,TA,u, s), taking as input: (1) a
rank-n matrix A ∈ Zn×mq , and any matrix B ∈ Zn×m1

q , (2) a “short” basis

TA for lattice Λ⊥q (A), a vector u ∈ Znq , (3) a Gaussian parameter s > ||T̃A|| ·
ω(
√

log(m+m1)). Then outputs a vector r ∈ Zm+m1 distributed statistically
close to DΛu

q (F),s where F := [A|B].

7

– There is a ppt algorithm SampleRight(A,B,R,TB,u, s), taking as input: (1)
a matrix A ∈ Zn×mq , and a rank-n matrix B ∈ Zn×mq , a matrix R ∈ Zm×mq ,
where sR := ||R|| = supx:||x||=1 ||Rx||, (2) a “short” basis TB for lattice

Λ⊥q (B), a vector u ∈ Znq , (3) a Gaussian parameter s > ||T̃B||·sR ·ω(
√

logm).
Then outputs a vector r ∈ Z2m distributed statistically close to DΛu

q (F),s where

F := (A|AR + B).

Gadget Matrix. We now recall the gadget matrix [21, 5], and the extended
gadget matrix technique appeared in [7], that are important to our construction.

Definition 2.6 Let m = n · dlog qe, and define the gadget matrix

Gn,2,m = g ⊗ In ∈ Zn×mq

where vector g = (1, 2, 4, ..., 2blog qc) ∈ Zdlog qeq , and ⊗ denotes tenser product. We
will also refer to this gadget matrix as “powers-of-two” matrix. We define the
inverse function G−1n,2,m : Zn×mq → {0, 1}m×m which expands each entry a ∈ Zq
of the input matrix into a column of size dlog qe consisting of the bits of binary
representations. We have the property that for any matrix A ∈ Zn×mq , it holds

that Gn,2,m ·G−1n,2,m(A) = A.

As mentioned by [21] and explicitly described in [7], the results for Gn,2,m and
its trapdoor can be extended to other integer powers or mixed-integer products.
In this direction, we give a generalized notation for gadget matrices as follows:

3 Our Construction

In this section, we describe our compact IPE construction. Before diving into
the details, we first revisit a novel encoding method implicitly employed in
adaptively secure IBE setting in [7]. Consider the vector space Zdq . For vec-

tor v = (v1, ..., vd) ∈ Zdq , we define the following encoding algorithm which maps
a d-dimensional vector to an n×m matrix.

encode(v) = Ev =
[
v1In| · · · |vdIn

]
·Gdn,`,m (1)

Similarly, we also define the encoding for an integer a ∈ Zq as: encode(a) = Ea =
aGn,2,m. The above encoding supports the vector space operations naturally, and
our compact IPE construction relies on this property.

3.1 IPE Construction Supporting log(λ)-length Attributes

We describe our IPE scheme that each secret key is associated with a predicate
vector v ∈ Zdq (for some fixed d = log λ), and each ciphertext will be associated

with an attribute vector w ∈ Zdq . Decryption succeeds if and only if 〈v,w〉 =
0 mod q. We further extend our IPE construction supporting d = poly(λ)-length
vectors in Section 3.3. The description of Π = (Setup,KeyGen,Enc,Dec) is as
follows:

8

– Setup(1λ, 1d): On input the security parameter λ and length parameter d, the
setup algorithm first sets the parameters (q, n,m, s) as below. We assume the
parameters (q, n,m, s) are implicitly included in both pp and msk. Then it
generates a random matrix A ∈ Zn×mq along with its trapdoor TA ∈ Zm×mq ,
using (A,TA)← TrapGen(q, n,m). Next sample a random matrix B ∈ Zn×mq

and a random vector u ∈ Znq . Output the public parameter pp and master
secret key msk as

pp = (A,B,u), msk = (pp,TA)

– KeyGen(msk,v): On input the master secret key msk and predictor vector
v = (v1, ..., vd) ∈ Zdq , the key generation algorithm first sets matrix Bv as

Bv = B ·G−1dn,`,m

(v1In...
vdIn

 ·Gn,2,m

)

Then sample a low-norm vector rv ∈ Z2m using algorithm SampleLeft(A,Bv,u, s),
such that [A|Bv] · rv = u mod q. Output secret key skv = rv.

– Enc(pp,w, µ): On input the public parameter pp, an attribute vector w =
(w1, ..., wd) ∈ Zdq and a message µ ∈ {0, 1}, the encryption algorithm first
chooses a random vector s ∈ Znq and a random matrix R ∈ {−1, 1}m×m.
Then encode the attribute vector w as in Equation (1)

Ew =
[
w1In| · · · |wdIn

]
·Gdn,`,m

Let the ciphertext ctw = (c0, c1, c2) ∈ Z2m+1
q be

c0 = sTA + eT0 , c1 = sT(B + Ew) + eT0 R, c2 = sTu+ e1 + dq/2eµ

where errors e0 ← DZm,s, e1 ← DZ,s.
– Dec(skv, ctw): On input the secret key skv = rv and ciphertext ctw = (c0, c1, c2),

if 〈v,w〉 6= 0 mod q, then output ⊥. Otherwise, first compute

c′1 = c1 ·G−1dn,`,m

(v1In...
vdIn

 ·Gn,2,m

)

then output Round(c2 − 〈(c0, c′1), rv〉).

Lemma 3.1 The IPE scheme Π described above is correct (c.f. Definition 2.1).

Proof. When the predicate vector v and attribute vector w satisfies 〈v,w〉 =
0 mod q, it holds that c′1 = sTBv + e′0. Therefore, during decryption, we have

µ′ = Round

(
dq/2eµ+ e1 − 〈(e0, e′0), rv〉︸ ︷︷ ︸

small

)
= µ ∈ {0, 1}

The third equation follows if (e1 − 〈(e0, e′0), rv〉) is indeed small, which holds
w.h.p. by setting the parameters appropriately below. ut

9

Parameter Selection. To support d = log(λ)-length predicate/attribute vec-
tors, we set the system parameters according to Table 2, where ε > 0 is an
arbitrarily small constant.

Parameters Description Setting

λ security parameter

n lattice row dimension λ

m lattice column dimension n1+ε

q modulus n3+εm

s sampling and error width n1+ε

` integer-base parameter n

Table 2. log(λ)-length IPE Parameters Setting

These values are chosen in order to satisfy the following constraints:

– To ensure correctness, we require |e1−〈(e0, e′0), rv〉| < q/4; Let rv = (r1, r2),
here we can bound the dominating term:

|e
′T
0 r2| ≤ ||e

′T
0 || · ||r2|| ≈ s

√
md` log` q · s

√
m = s2mn1+ε < q/4

– For SampleLeft, we know ||T̃A|| = O(
√
n log(q)), thus this requires that the

sampling width s satisfies s >
√
n log(q) ·ω(

√
log(m)). For SampleRight, we

need s > ||T̃Gn,2,m || · ||R||ω(
√

logm) = n1+εω(
√

logm). To apply Regev’s
reduction, we need s >

√
nω(log(n)) (s here is an absolute value, not a ratio).

Therefore, we need s > n1+ε

– To apply the Leftover Hash Lemma, we need m ≥ (n+ 1) log(q) +ω(log(n)).

3.2 Security Proof

In this part, we show the weakly attribute-hiding property of our IPE con-
struction. We adapt the simulation technique in [3] by plugin the encoding
of vectors. Intuitively, to prove the theorem we define a sequences of hybrids
against adversary A in the weak attribute-hiding experiment. The adversary
A outputs two attribute vectors w0 and w1 at the beginning of each game,
and at some point outputs two messages µ0, µ1. The first and last games cor-
respond to real security game with challenge ciphertexts Enc(pp,w0, µ0) and
Enc(pp,w1, µ1) respectively. In the intermediate games we use the “alterna-
tive” simulation algorithms (Sim.Setup,Sim.KeyGen,Sim.Enc). During the course
of the game the adversary can only request keys for predicate vector vi such
that 〈vi,w0〉 6= 0 and 〈vi,w1〉 6= 0. We first define the simulation algorithms
(Sim.Setup,Sim.KeyGen,Sim.Enc) in the following:

– Sim.Setup(1λ, 1d,w∗): On input the security parameter λ, the length param-
eter d, and an attribute vector w∗ ∈ Zdq , the simulation setup algorithm first

10

chooses a random matrix A← Zn×mq and a random vector u← Znq . Then set
matrix

B = AR∗ −Ew∗ , Ew∗ =
[
w∗1In| · · · |w∗dIn

]
·Gdn,`,m

where matrix R∗ is chosen randomly from {−1, 1}m×m. Output pp = (A,B,u)
and msk = R∗.

– Sim.KeyGen(msk,v): On input the master secret key msk and a vector v ∈ Zdq ,
the simulation key generation algorithm sets matrix Rv and Bv as

Rv =

(v1In...
vdIn

 ·Gn,2,m

)
, Bv = B ·G−1dn,`,m(Rv)

Then sample a low-norm vector rv ∈ Z2m using algorithm

rv ← SampleRight(A, 〈v,w∗〉Gn,2,m,R
∗G−1dn,`,m(Rv),TGn,2,m

u, s)

such that [A|Bv] · rv = u mod q. Output secret key skv = rv.
– Sim.Enc(pp,w∗, µ): The simulation encryption algorithm is the same as the

counterpart in the scheme, except the matrix R∗ is used in generating the
ciphertext instead of sampling a random matrix R ∈ {−1, 1}m×m.

Due to the space limit, we include proof of the following theorem in full version.

Theorem 3.2 Assuming the hardness of (n, q, χ)-LWE assumption, the IPE
scheme described above is weakly attribute-hiding (c.f. Definition 2.2).

3.3 IPE Construction Supporting poly(λ)-length Vectors

We also extend our IPE construction to support t = poly(λ)-length vectors,
which means the predicate and attribute vector are chosen in vector space Ztq.
Intuitively speaking, our construction described below can be regarded as a
t′ = dt/de “parallel repetition” version of IPE construction for d = log(λ)-length
vectors. In particular, we encode every log(λ) part of the attribute vector v, and
then concatenate these encoding together as the encoding of v. Due to space
limit, we include the detailed scheme and proof in the full version.

References

1. Shweta Agrawal. Stronger security for reusable garbled circuits, general definitions
and attacks. In Crypto 2017.

2. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the
standard model. In EUROCRYPT 2010.

3. Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Func-
tional encryption for inner product predicates from learning with errors. In ASI-
ACRYPT 2011,

4. Miklós Ajtai. Generating hard instances of lattice problems (extended abstract).
In 28th ACM STOC, pages 99–108. ACM Press, May 1996.

11

5. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial
error. In CRYPTO 2014, Part I.

6. Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices.
Theory of Computing Systems, 48(3):535–553, 2010.

7. Daniel Apon, Xiong Fan, and Feng-Hao Liu. Vector encoding over lattices and its
applications. Cryptology ePrint Archive, Report 2017/455, 2017.

8. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. In 2007 IEEE Symposium on Security and Privacy.

9. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In CRYPTO 2001.

10. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
EUROCRYPT 2014.

11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In Yuval Ishai, editor, TCC 2011.

12. Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In Salil P. Vadhan, editor, TCC 2007.

13. David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. In EUROCRYPT 2010.

14. Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data. In EUROCRYPT 2004.

15. Craig Gentry. Fully homomorphic encryption using ideal lattices. In 41st ACM
STOC, 2009.

16. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In 40th ACM STOC, May 2008.

17. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In CRYPTO 2013, Part I.

18. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based en-
cryption for circuits. In 45th ACM STOC, 2013.

19. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM CCS 06.

20. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYPT 2008.

21. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In EUROCRYPT 2012.

22. Michael Mitzenmacher, editor. 41st ACM STOC. ACM Press, May / June 2009.
23. Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint

Archive, Report 2010/556, 2010. http://eprint.iacr.org/2010/556.
24. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-

raphy. In 37th ACM STOC, May 2005.
25. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO’84.
26. Keita Xagawa. Improved (hierarchical) inner-product encryption from lattices. In

PKC 2013.

12

